A research park, science park, or science and technology park is an area with a collection of buildings dedicated to scientific research on a business footing. There are many approximate synonyms for "science park", including research park, technology park, technopolis and biomedical park. The appropriate term typically depends on the type of science and research in which the park's entities engage. Often, science parks are associated with or operated by institutions of higher education (colleges and universities).
These parks differ from typical high-technology business districts in that science parks and the like are more organized, planned, and managed. They differ from science centres in being concerned with future developments in science and technology. Typically businesses and organizations in the parks focus on product advancement and innovation as opposed to industrial parks that focus on manufacturing and business parks that focus on administration.
Besides building area, these parks offer a number of shared resources, such as uninterruptible power supply, telecommunications hubs, reception and security, management offices, restaurants, bank offices, convention center, parking, internal transportation, entertainment and sports facilities, etc. In this way, the park offers considerable advantages to hosted companies, by reducing overhead costs with these facilities.
Science and technology parks are encouraged by local government, in order to attract new companies to towns, and to expand their tax base and employment opportunities to citizens. Land and other taxes are usually waived off or reduced along a number of years, in order to attract new companies for the science and technological parks.
Contents |
The world's first university research park started in the early 1950's near Stanford University, and foreshadowed the community known today as Silicon Valley. Another early university research park was, and is, Research Triangle Park.
While parks vary widely in size and shape, from urban high-rises to suburban or rural locations, a typical American university research park is located in a suburban community with a population of less than 500,000 and is operated by a university or a university-affiliated non-profit organization. The companies in a typical park are primarily private sector, but the park is also home to university and government facilities.
In Europe, Pierre Laffitte, the mastermind and founder of Sophia Antipolis Science Park in France, described the concept of cross fertilization as the interchange between different cultures or different ways of thinking that is mutually productive and beneficial; "the cross-fertilization of science and the creative arts" not only in terms of economic, but also on a social and cultural level. He applied this concept for the creation of Sophia Antipolis science park. In 1960, the French newspaper Le Monde published an article written by Senator Pierre Laffitte titled "Le Quartier Latin aux Champs," partly inspired by observations made while visiting the United States, Sweden, the U.K., and France, his theory was that creativity is born through the exchange between industrial, scientific, philosophical, and artistic minds.He decided to apply the concept in France, thus the Sophia Antipolis Science Park.
Science parks are sources of entrepreneurship, talent, and economic competitiveness, and are key elements of the infrastructure supporting the growth of today's global knowledge economy. By providing a location in which government, universities and private companies cooperate and collaborate, science parks create environments that foster collaboration and innovation. They enhance the development, transfer, and commercialization of technology.
A new model, which is strategically planned mixed-use campus expansions, is emerging and involves shared space in which industry and academic researchers can work side by side. These university-affiliated mixed-use campus developments are not simply real-estate ventures. They embody a commitment by universities to partake in broader activities, offering companies high-value sites for accessing researchers, specialized facilities, and students, and promoting live-work-play environments. Key features of these mixed-use developments include space for significant future research growth; multi-tenant facilities to house researchers and companies; and housing, along with other amenities which are attractive to young faculty, post-doctoral and graduate students.
Science parks are also being developed to leverage the assets of non-university research and development organizations such as federal laboratories. In addition to universities, major medical research centers and other research organizations can be key drivers of technology-based economic development. It is becoming increasingly common for communities in which a federal laboratory is located to create a science park to leverage laboratory resources to realize economic development.
Federal laboratories attract companies that wish to leverage the expertise of the laboratory researchers and to gain access to highly specialized, and often unique, facilities and equipment. Science parks can also provide a location for start-up companies created to commercialize technology developed in the labs.
University research and science parks provide the launch pad that startup companies need when they are "spun out" from a university or company. Park-provided training in such areas as intellectual property law and business planning help the fledgling businesses to succeed. Universities, in turn, benefit by exposure to the business world, and the connection to the cutting-edge research being conducted outside their walls in industry. What all these parks have in common is that they are, at heart, knowledge partnerships that foster innovation.
The typical park provides a range of business startup assistance to its client companies, which are often small startups based on innovative new ideas from university or private sector researchers. The park has an operating budget of less than $1 million a year. Because it is designed as a non-profit entity, the park itself does not generate significant net revenue. 750 people work at jobs there, primarily at information technology companies, pharmaceutical firms, or scientific and engineering service providers. These sorts of companies provide 45 percent of all science park jobs.
Today more than 300,000 workers in North America work in university research parks. According to the AURP-Battelle Technology Practice report, released in October 2007, every job in a research park generates an average of an additional 2.57 jobs in the economy.[1] Science parks are succeeding in incubating and growing companies. According to the Battelle report, nearly 800 firms graduated from park incubators in the past five years, while only thirteen percent failed. About one-quarter of these graduates remain in their park. Fewer than ten percent of the graduates left the region.
University research and science parks are found all over the world, but are mostly concentrated in developed countries; over 140 are found in North America alone. Prominent examples include the Purdue Research Park in West Lafayette, Indiana, Hsinchu Science Park in Taiwan, The Research Triangle Park in North Carolina, NanKang Software Park, Cambridge Science Park and NETpark in County Durham, England, Daedeok Innopolis in South Korea.
Centennial Campus at North Carolina State University is a case in point. In the 1980s, pressure for space at the main North Carolina State University (NCSU) campus in Raleigh led to exploration of nearby options, including substantial holdings by the state mental-health system and the Diocese of Raleigh on 1,000 acres (4.0 km2) surrounding the old Lake Raleigh Reservoir. Starting in the 1980s, the land was conveyed to NCSU in stages, and serious planning began with the appointment of a former dean of the university's School of Design to the position of campus coordinator.
Sandia Science and Technology Park, the NASA Research Park at Ames, and the Tri-Cities Science and Technology Park located close to the Pacific Northwest National Laboratory are examples of research parks that have been developed by or adjacent to federal laboratories. Another example is the East Tennessee Technology Park at Oak Ridge National Laboratory.
Other examples of U.S. science parks are the Cummings Research Park in Huntsville, Alabama, and the University of Wisconsin Research Park in Madison, Wisconsin. Begun in 1962, Cummings today is home to 285 companies which employ over 25,000 employees.
Brazil is one of the developing countries that has strongly encouraged the establishment of technology parks and business incubators, mostly for budding small high tech companies. Several dozens of such parks are now in existence. In the state of São Paulo, the state government has sponsored a technology park program for several cities which have a strong high tech base, such as São Paulo City, Campinas, São José dos Campos and São Carlos. These cities have strong research universities, such as the University of São Paulo, State University of Campinas, Federal University of São Carlos, pure and applied research institutes and high technology companies, such as Embraer, one of the largest aircraft manufacturers in the world. Campinas also boasts the largest number of high-tech business incubators and industrial parks (a total of eight), such as the CIATEC I and II, Softex, TechnoPark, InCamp, Polis, TechTown, Industrial Park of Campinas and others. Because of this Campinas has been dubbed the Brazilian Silicon Valley.
The Association of University Research Parks (AURP), a non-profit association made up of university-affiliated research parks, defines university research and science parks as a property-based venture, which has certain characteristics, of which include:
Research parks exist to enhance collaboration between academia, industry and government.[2][3]
The International Association of Science Parks explains that the purpose of these parks is to promote the economic development and competitiveness of cities and regions by creating new business, adding value to companies, and creating new knowledge-based jobs.[4]
The Cabral Dahab Science Park Management Paradigm, first presented by Regis Cabral as ten points in 1990, has been influential in the management of science parks around the world and lays down the following conditions for a property development to be considered a science park. According to the management paradigm, a science park must:
|